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Abstract

Recently, Abad [2003. Optimal pricing and lot-sizing under conditions of perishability, finite production and partial

backordering and lost sale, European Journal of Operational Research, 144, 677–685] studied the pricing and lot-sizing

problem for a perishable good under finite production, exponential decay, partial backordering and lost sale. In this article,

we extend his model by adding not only the backlogging cost but also the cost of lost goodwill. We then analytically

compare the net profits per unit time between Abad’s (2003) model and Goyal and Giri’s [2003. The production-inventory

problem of a product with time varying demand, production and deterioration rates. European Journal of Operational

Research, 147, 549–557] model. In Abad’s model, the cycle starts with an instant production to accumulate stocks, then

stops production to use up stocks, and finally restarts production to meet the unsatisfied demands. By contrast, in Goyal

and Giri’s model, the cycle begins with a period of shortages, then starts production until accumulated inventory reaches

certain level, and finally stops production and uses up inventory. Our theoretical results show that there is no dominant

one between these two models. Furthermore, we provide certain conditions under which one model has more net profit per

unit time than the other. Finally, we give several numerical examples to illustrate the results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many researchers have studied inventory models for deteriorating items such as volatile liquids, blood
banks, medicines, electronic components and fashion goods. Ghare and Schrader (1963) were the first
proponents for developing a model for an exponentially decaying inventory. They categorized decaying
inventory into three types: Direct spoilage, physical depletion and deterioration. Next, Misra (1975) developed
an economic order quantity (i.e., EOQ) model with a Weibull deterioration rate for the perishable product but
he did not consider backordering. Dave and Patel (1981) considered an EOQ model for deteriorating items
e front matter r 2006 Elsevier B.V. All rights reserved.
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with time-proportional demand when shortages were prohibited. Sachan (1984) then generalized the EOQ
model to allow for shortages. Later, Hariga (1996) generalized the demand pattern to any log-concave
function. Teng et al. (1999) and Yang et al. (2001) further generalized the demand function to include any non-
negative, continuous function that fluctuates with time. Recently, Papachristos and Skouri (2003) extended
Wee’s (1999) deteriorating EOQ model with quantity discount, pricing and partial backordering to allow for
the demand rate to be a convex decreasing function of the selling price.

Abad (1996) established the optimal pricing and lot-sizing EOQ policies under conditions of perishability
and partial backordering. Then Abad (2000) extended the optimal pricing and lot-sizing EOQ model to an
economic production quantity (i.e., EPQ) model. Balkhi and Benkherouf (1996) developed a general EPQ
model for deteriorating items where demand and production rates are time varying, but the rate of
deterioration is constant. Balkhi (2001) then further generalized the EPQ model to allow for time-varying
deterioration rate. Concurrently, Yan and Cheng (1998) considered a perishable single-item EPQ model in
which production rate, demand rate and deterioration rate are assumed to be functions of time, and shortages
are partially backlogged. Other recent articles related to this research area were written by Abad (2001),
Chang and Dye (1999), Papachristos and Skouri (2000), Skouri and Papachristos (2003), Teng et al. (2002),
Yang and Wee (2003) and Wee and Law (1999). In addition, Raafat (1991), and Goyal and Giri (2001) wrote
two excellent surveys on the recent trends in modeling of continuously deteriorating inventory.

Recently, Abad (2003) studied the pricing and lot-sizing problem for a perishable good under finite
production, exponential decay and partial backordering and lost sale. He assumed that customers are
impatient and the backlogging rate is a negative exponential function of the waiting time. In addition, he
assumed that the customers are served on first come first served basis during the shortage period. Then he
provided a solution procedure to obtain the optimal price and lot-size that maximizes the net profit per unit
time. However, he did not include the shortage cost for backlogged items and the cost of lost goodwill due to
lost sales into the objective. If the objective does not include these two costs, then it will alter the
optimal solution and overestimate the net profit. To correct them, in this paper, we add both the shortage cost
for backlogged items and the cost of lost goodwill due to lost sales into the objective suggested by Abad
(2003).

In Abad (2003), the production-inventory model starts with an instant production to accumulate stocks,
then stops production to use up stocks, and finally restarts production to meet the unsatisfied demands. In
fact, Abad’s production-inventory model is similar to that in Balkhi and Benkherouf (1996). Lately, Goyal
and Giri (2003) investigated a similar production-inventory problem in which the demand, production and
deterioration rates of a product were assumed to vary with time. However, pricing was not under
consideration and the backlogging rate was assumed to be a constant fraction. They then proposed a new
production-inventory model in which the cycle begins with a period of shortages, then starts production until
accumulated inventory reaches a certain level, and finally stops production and uses up inventory. Finally,
Goyal and Giri (2003) provided a numerical example to show that their model outperforms Balkhi and
Benkherouf’s model (1996) in terms of the least expensive total cost per unit time.

In this paper, we first extend Abad’s (2003) pricing and lot-sizing model by adding not only the shortage
cost for backlogged items but also the cost of lost goodwill due to lost sales into the objective. Next, we
establish a new modeling approach as in Goyal and Giri (2003) to the same pricing and lot-sizing inventory
problem. We then characterize the optimal solution to both distinct models, and prove that both two models
provide the same profit if all parameters are constant. However, if any single parameter is varying with time,
then the performances of these two models are varied. Furthermore, we obtain some theoretical results that
show the conditions under which one model has more net profit per unit time than the other. Finally, we
provide several numerical examples to illustrate the results, and conclusions are made.

2. Assumptions and notations

The following assumptions are similar to those in Abad’s (2003) model.
(1)
 The planning horizon is infinite.

(2)
 The initial and final inventory levels are both zero.
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(3)
 Shortages are allowed. However, the longer the waiting time, the smaller the backlogging rate. Hence, we
assume that the fraction of shortages backordered B(t) is a decreasing and differentiable function of t,
where t is the waiting time up to the next replenishment.
(4)
 The demand rate is a decreasing function of the selling price and it is twice differentiable.

(5)
 The production rate, which is finite, is higher than the demand rate.

(6)
 A constant fraction of the on-hand inventory deteriorates per unit of time and there is no repair

or replacement of the deteriorated inventory. Hence, there is no salvage value for the deteriorated
items.
(7)
 The unit cost, the holding cost, the shortage cost for backlogged items, and the cost of lost goodwill due to
lost sales are assumed to be functions of time.
In addition, the following notations are used throughout this paper:

Ii(t) on-hand stock level (or number of backorders during shortage periods) at time t in Phase i, i ¼ 1, 2, 3,
and 4

R production rate for the item (units/unit time)
K setup cost per setup
v(t) unit cost at time t

h(t) unit holding cost per unit time at time t

p unit selling price within the replenishment cycle (a decision variable), we assume that p4v(t)
c1(t) unit shortage cost per unit time for backlogged items at time t

c2(t) unit cost of lost goodwill due to lost sales at time t

D(p) demand rate per unit time, which is a decreasing function of p. We assume R4D( p). We will use D

and D(p) interchangeably
s decay coefficient, which is a constant (i.e., exponential decay)
b duration of positive inventory before the end of production
T duration of positive inventory cycle (a decision variable)
c duration of negative inventory before the start of production
l duration of negative inventory cycle (a decision variable)

In this paper, we assume that the vendor wants to determine the price p, the duration of positive
inventory cycle T, and the duration of negative inventory cycle l in order to maximize its net profit per
unit time. As a result, we have three decision variables for this pricing and lot-sizing inventory shortage
problem.
3. Mathematical formulations and theoretical results

In this section, we first establish Abad’s modeling approach for the problem, then set up Goyal and Giri’s
modeling approach to the problem next, and finally compare the net profits per unit time obtained from these
two models.
3.1. Model 1: Abad’s (2003) approach

In this subsection, the behavior of the inventory in a cycle is shown in Fig. 1, as well as in Abad (2003).
Consequently, the inventory cycle is described by the following four phases:

Phase 1: During the time interval [0,b], the system is subject to the effect of production, demand and
deterioration. Therefore, the change of the inventory level at time t, I1(t), is governed by

dI1 tð Þ

dt
þ sI1 tð Þ ¼ R�D with the boundary condition I1ð0Þ ¼ 0. (1)
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Phase 2: In the time interval [b,T], the system is affected by the combined the demand and deterioration.
Hence, the change of the inventory level at time t, I2(t), is governed by

dI2 tð Þ

dt
þ sI2 tð Þ ¼ �D with the boundary condition I2ðTÞ ¼ 0. (2)

The solution to differential equation (1) is

I1ðtÞ ¼
R�Dð Þ

s
1� e�st
� �

; t 2 0;b½ �. (3)

Setting t ¼ b into Eq. (3), we obtain the maximum positive inventory in a cycle is

I1ðbÞ ¼
R�Dð Þ

s
1� e�sb
� �

. (4)

Similarly, the solution to differential equation (2) is

I2ðtÞ ¼
D

s
es T�tð Þ � 1
� �

; t 2 b;T½ �. (5)

Equating expressions (3) and (5) at t ¼ b, we have

I1ðbÞ ¼ I2ðbÞ ¼
R�D

s
1� e�sb
� �

¼
D

s
es T�bð Þ � 1
� �

. (6)

Solving Eq. (6) for b, we have

b ¼
1

s
ln

R�DþDeTs

R

� �
. (7)

Phase 3: For tA[T,T+c], similar to Abad’s (2003) model, the backlogging rate B(t) is a negative
exponential function of the waiting time t. Therefore, we have

BðtÞ ¼ k0e
�k1t; k0p1; 0pk1. (8)

Since customers are served on first come first served basis during shortage period, we know from Fig. 1 that
the waiting time is given by t ¼ T+c�t�I3(t)/R, for tA[T,T+c]. Therefore, the number of backorders at
time t,I3(t), satisfies the following differential equation:

dI3 tð Þ

dt
¼ �DB T þ c� t� I3ðtÞ=R

� �
¼ �Dk0e

�k1 Tþc�t�I3 tð Þ=Rð Þ, (9)
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with the boundary condition I3(T) ¼ 0. The solution to (9) is

I3 tð Þ ¼ �
R

k1
ln

Dk0e
k1 t�T�cð Þ þ R�Dk0e

�k1c

R

� �� �
; for t 2 T ;T þ c½ �. (10)

Setting t ¼ T+c into Eq. (10), we obtain the maximum number of backorders per cycle as follows:

�I3 T þ cð Þ ¼
R

k1
ln

Dk0 þ R�Dk0e
�k1c

R

� �� �
. (11)

Phase 4: For tA[T+c,T+l], the waiting time is given by t ¼ �I4(t)/R. Therefore, the number of
backorders at time t, I4(t), satisfies the following differential equation:

dI4 tð Þ

dt
¼ R�DB �I4ðtÞ=R

� �
¼ R�Dk0e

�k1 �I4 tð Þ=Rð Þ, (12)

with the boundary condition I4(T+l) ¼ 0. The solution to (12) is

I4 tð Þ ¼ �
R

k1
ln

R�Dk0ð Þe�k1 t�T�lð Þ þDk0

R

� �� �
; for t 2 T þ c;T þ l½ �. (13)

Given the condition I3(T+c) ¼ I4(T+c), we get

c ¼
1

k1
ln

Dk0 þ ek1l R�Dk0ð Þ

R

� �� �
. (14)

Applying Eq. (14) into Eq. (13), we can rewrite Eq. (13) as follows:

I4 tð Þ ¼ �
R

k1
ln

Re�k1 t�T�cð Þ �Dk0e
�k1 t�Tð Þ þDk0

R

� �� �
. (15)

Next, the net profit per unit time consists of the following six elements:
(a)
 The revenue is given by

R1 ¼ pDT þ pR l� cð Þ. (16)
(b)
 The set up cost is given by

SC1 ¼ K . (17)
(c)
 The production cost is given by

PC1 ¼

Z b

0

v tð ÞRdtþ

Z Tþl

Tþc
v tð ÞRdt. (18)
(d)
 The inventory holding cost is given by

HC1 ¼

Z b

0

h tð ÞI1 tð Þdtþ

Z T

b
h tð ÞI2 tð Þdt

¼

Z b

0

h tð Þ
R�Dð Þ

s
1� e�st
� �

dtþ

Z T

b
h tð Þ

D

s
es T�tð Þ � 1
� �

dt. ð19Þ
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The shortage cost for backlogged items is given by
(e)
BC1 ¼

Z Tþc

T

c1ðtÞ �I3ðtÞ½ �dtþ

Z Tþl

Tþc
c1ðtÞ �I4ðtÞ½ �dt

¼
R

k1

Z Tþc

T

c1ðtÞ ln
Dk0e

k1ðtT�cÞ þ R�Dk0e
�k1c

R

� �� ��
dt

þ

Z Tþl

Tþc
c1ðtÞ ln

Re�k1 tT�cð Þ �Dk0e
�k1 t�Tð Þ þDk0

R

� �� �
dt

�

¼
R

k1

Z c

0

c1ðtþ TÞ ln
Dk0e

k1 t�cð Þ þ R�Dk0e
�k1c

R

� �� ��
dt

þ

Z l

c
c1ðtþ TÞ ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �� �
dt

�
. ð20Þ
(f)
 The cost of lost goodwill due to lost sales is given by

LC1 ¼

Z Tþc

T

c2 tð Þ 1� B T þ c� t� I3 tð Þ=R
� �	 


Ddtþ

Z Tþl

Tþc
c2 tð Þ 1� B �I4 tð Þ=R

� �	 

Ddt

¼

Z l

0

c2 tþ Tð Þ 1�
Rk0e

k1 t�cð Þ

R�Dk0e�k1c þDk0ek1 t�cð Þ

� �
Ddt. ð21Þ

Given the above, the net profit during time-span [0,T+l] is

F 1 p;T ; lð Þ

¼ R1 � SC1 � PC1 �HC1 � BC1 � LC1

¼ pDT þ pR l� cð Þ½ � � K �

Z b

0

v tð ÞRdtþ

Z Tþl

Tþc
v tð ÞRdt

� �

�

Z b

0

h tð Þ
R�Dð Þ

s
1� e�st
� �

dtþ

Z T

b
h tð Þ

D

s
es T�tð Þ � 1
� �

dt

� �

�
R

k1

Z c

0

c1 tþ Tð Þ ln
Dk0e

k1 t�cð Þ þ R�Dk0e
�k1c

R

� �� ��
dt

þ

Z l

c
c1 tþ Tð Þ ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �� �
dt

�

�

Z l

0

c2 tþ Tð Þ 1�
Rk0e

k1 t�cð Þ

R�Dk0e�k1c þDk0ek1 t�cð Þ

� �
Ddt, ð22Þ
where b�b(p,T) is given by Eq. (7) and c�c(p,T) is given by Eq. (14). Hence, the net profit per unit
time is

P1 p;T ; lð Þ ¼
F 1 p;T ; lð Þ

T þ l
, (23)

where F1(p,l,T) is given by Eq. (22). As a result, the problem faced by the vendor is

ðP1Þ max: P1 p;T ; lð Þ (24a)

s:t: 0ocol;

0oboT ;

vpp:

(24b2d)
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3.2. Model 2: Goyal and Giri’s (2003) approach

In this subsection, the behavior of the inventory in a cycle is depicted in Fig. 2, as well as in Goyal and Giri’s
(2003) model. Based on the assumptions in Section 2, and from Fig. 2, we know that the inventory is also
described by the following four phases:

Phase 1: For tA[0,c],

dI1 tð Þ

dt
¼ �DB c� t� I1ðtÞ=R

� �
¼ �Dk0e

�k1 c�t�I1 tð Þ=Rð Þ, (25)

with the boundary condition I1(0) ¼ 0.
Phase 2: For tA[c,l],

dI2 tð Þ

dt
¼ R�DB �I2ðtÞ=R

� �
¼ R�Dk0e

�k1 �I2 tð Þ=Rð Þ, (26)

with the boundary condition I2(l) ¼ 0.
Phase 3: For tA[l, b+l],

dI3 tð Þ

dt
þ sI3 tð Þ ¼ R�D, (27)

with the boundary condition I3(l) ¼ 0.
Phase 4: For tA[b+l, T+l],

dI4 tð Þ

dt
þ sI4 tð Þ ¼ �D, (28)

with the boundary condition I4(T+l) ¼ 0.
The solutions of the above four ordinary differential equations are given as follows.

I1 tð Þ ¼ �
R

k1
ln

Dk0e
k1 t�cð Þ þ R�Dk0e

�k1c

R

� �
; t 2 0;c½ �, (29)

I2 tð Þ ¼ �
R

k1
ln

R�Dk0ð Þe�k1 t�lð Þ þDk0

R

� �

¼ �
R

k1
ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �
; t 2 c; l½ �, ð30Þ
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I3 tð Þ ¼
R�Dð Þ

s
1� e�s t�lð Þ
	 


; t 2 l; bþ l½ � (31)

and

I4 tð Þ ¼
D

s
es Tþl�tð Þ � 1
	 


; t 2 bþ l;T þ l½ �, (32)

respectively. Solving the boundary conditions I1(c) ¼ I2(c) and I3(b+l) ¼ I4(b+l), we obtain the following
equations which are the same as Eqs. (7) and (14), respectively:

c ¼
1

k1
ln

Dk0 þ ek1l R�Dk0ð Þ

R

� �� �
and b ¼

1

s
ln

R�DþDeTs

R

� �
. (33)

Therefore, the net profit per unit time in Model 2 consists of the following elements:
(a)
 The revenue is given by

R2 ¼ pDT þ pR l� cð Þ. (34)
(b)
 The set up cost is given by

SC2 ¼ K . (35)
(c)
 The production cost is given by

PC2 ¼

Z l

c
v tð ÞRdtþ

Z bþl

l
v tð ÞRdt. (36)
(d)
 The inventory holding cost is given by

HC2 ¼

Z bþl

l
h tð ÞI3 tð Þdtþ

Z Tþl

bþl
h tð ÞI4 tð Þdt

¼

Z bþl

l
h tð Þ

R�Dð Þ

s
1� e�s t�lð Þ
	 


dtþ

Z Tþl

bþl
h tð Þ

D

s
es Tþl�tð Þ � 1
	 


dt. ð37Þ
(e)
 The shortage cost for backlogged items is given by

BC2 ¼

Z c

0

c1 tð Þ �I1 tð Þ½ �dtþ

Z l

c
c1 tð Þ �I2 tð Þ½ �dt

¼
R

k1

Z c

0

c1 tð Þ ln
Dk0e

k1 t�cð Þ þ R�Dk0e
�k1c

R

� ��
dt

þ

Z l

c
c1 tð Þ ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �
dt

�
. ð38Þ
(f)
 The cost of lost goodwill due to lost sales is given by

LC2 ¼

Z c

0

c2 tð Þ 1� B c� t� I1 tð Þ=R
� �	 


Ddtþ

Z l

c
c2 tð Þ 1� B �I2 tð Þ=R

� �	 

Ddt

¼

Z l

0

c2 tð Þ 1�
Rk0e

k1 t�cð Þ

R�Dk0e�k1c þDk0ek1 t�cð Þ

� �
Ddt. ð39Þ
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Hence, the profit during time-span [0,T+l] is

F 2 p;T ; lð Þ

¼ R2 � SC2 � PC2 �HC2 � BC2 � LC2

¼ pDT þ pR l� cð Þ½ � � K �

Z l

c
v tð ÞRdtþ

Z bþl

l
v tð ÞRdt

� �

�

Z bþl

l
h tð Þ

R�Dð Þ

s
1� e�s t�lð Þ
	 


dt

�
þ

Z Tþl

bþl
h tð Þ

D

s
es Tþl�tð Þ � 1
	 


dt

�

�
R

k1

Z c

0

c1 tð Þ ln
Dk0e

k1 t�cð Þ þ R�Dk0e
�k1c

R

� ��
dt

þ

Z l

c
c1 tð Þ ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �
dt

�

�

Z l

0

c2 tð Þ 1�
Rk0e

k1 t�cð Þ

R�Dk0e�k1c þDk0ek1 t�cð Þ

� �
Ddt, ð40Þ
where b�b(p,T) and c�c(p,T) are given by Eq. (33). Hence, the net profit per unit time is

P2 p;T ; lð Þ ¼
F 2 p;T ; lð Þ

T þ l
, (41)

where F2(p, l, T) is given by Eq. (40). Consequently, the problem faced by the vendor is

ðP2Þ maxP2 p;T ; lð Þ (42a)

s:t: 0ocol;

0oboT ;

vpp:

(42b2d)

3.3. A comparison between two models

Now, we compare the above two different models, and identify which model has more net profit per unit
time than the other under what conditions. From the above analysis, we can obtain the following theorems.

Theorem 1. Let ( p1,T1,l1) and ( p2,T2,l2) be the optimal solution for Models 1 and 2, respectively.
(a)
 If all parameters are constants (i.e., v(t) ¼ v, h(t) ¼ h, c1(t) ¼ c1, and c2(t) ¼ c2), then

Max: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ ¼ P2ð p2;T2; l2Þ ¼Max:P2ð p;T ; lÞ. (43a)
(b)
 If the holding cost h(t) is non-decreasing with t, and the other parameters are constants (i.e., v(t) ¼ v,
c1(t) ¼ c1, and c2(t) ¼ c2), then

P1ð p1;T1; l1ÞXP2ð p2;T2; l2Þ. (43b)

Otherwise, if the holding cost h(t) is non-decreasing with t, then

P1ð p1;T1; l1ÞpP2ð p2;T2; l2Þ.
(c)
 If the shortage cost c1(t) is non-increasing with t, and the other parameters are constants (i.e., v(t) ¼ v,
h(t) ¼ h, and c2(t) ¼ c2,), then

P1ð p1;T1; l1ÞXP2ð p2;T2; l2Þ. (43c)
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Conversely, if the shortage cost c1(t) is non-decreasing with t, then

P1ð p1;T1; l1ÞpP2ð p2;T2; l2Þ.
(d)
 If the cost of lost goodwill c2(t) is non-increasing with t, and the other parameters are constants (i.e.,h(t) ¼ h,
v(t) ¼ v and c1(t) ¼ c1), then

P1ð p1;T1; l1ÞXP2ð p2;T2; l2Þ. (43d)

In contrast, if the cost of lost goodwill c2(t) is non-decreasing with t, then

P1ð p1;T1; l1ÞpP2ð p2;T2; l2Þ.
Proof. See Appendix A. &
Theorem 2. Let ( p1,T1,l1) and ( p2,T2,l2) be the optimal solution for Models 1 and 2, respectively. If the unit cost

v(t) is varying with time, and the other parameters are constants (i.e., h(t) ¼ h, c1(t) ¼ c1 and c2(t) ¼ c2), then we

obtain that

if

Z b

0

v tð Þ � v tþ lð Þ½ �dtþ

Z l

c
v tþ Tð Þ � v tð Þ½ �dtp0,

then

P1ð p1;T1; l1ÞXP2ð p2;T2; l2Þ; and vice versa. (44)

Proof. See Appendix B. &

In order to find the optimal values of p, l and T, we have to solve the complex, nonlinear equations
q
Q

i p; l;Tð Þ=qp ¼ 0;q
Q

i p; l;Tð Þ=ql ¼ 0; and q
Q

i p; l;Tð Þ=qT ¼ 0; and some additional complementary
conditions, for i ¼ 1 and 2. Although it is difficult to solve the problem analytically, the reader can follow the
solution procedure proposed by Abad (2003) with proper software to solve the problem numerically.

4. Numerical examples

In this section, we use software MATHEMATICA version 4.1 to obtain the optimal solutions for both (P1)
and (P2).

Example 1. To understand the effect of adding the shortage cost c1(t), and the cost of lost goodwill c2(t) to the
net profit per unit time, we adopt the same example in Abad (2003). Therefore, we suppose
D( p) ¼ 1 600 000p�3,R ¼ 1000 units/week, v(t) ¼ $10/unit, h(t) ¼ $1/unit/week, K ¼ $1000/production run,
s ¼ 0.3, k0 ¼ 0.9, and k1 ¼ 0.6. However, we add c1(t) ¼ $8/unit, and c2(t) ¼ $5/unit. We obtain the
computational results as shown in Table 1. Comparing with the computational results in Abad (2003), we
know that the optimal price would be lower while the net profit per unit would be higher if we do not include
the shortage cost and the cost of lost goodwill into the model. Table 1 also verifies Part (a) of Theorem 1.
le 1

optimal values for Example 1

el (i) c l b b+l T T+c T+l p Pi

0.1650 0.2669 0.6602 0.9271 1.3329 1.4979 1.5998 15.3142 1039.02

0.1650 0.2669 0.6602 0.9271 1.3329 1.4979 1.5998 15.3142 1039.02
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Fig. 3. The graph of the unit cost in Example 1.

Table 2

The optimal values for Example 2

Model (i) c l b b+l T T+c T+l p Pi

1 0.1833 0.2560 0.4396 0.6957 1.1757 1.359 1.4317 16.8683 876.19

2 0.2597 0.3700 0.5008 0.8708 1.2469 1.5066 1.6169 16.4814 999.11
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Example 2. To see the effect of the unit cost on the net profit per unit time, let us assume that the unit cost is as
below, and the rest parameters are the same as in Example 1.

v tð Þ ¼

$9þ e� t�bð Þ; 0ptpb

$10; bptpbþ l =unit

$9þ e t�b�lð Þ; bþ lptpT þ l
:

8><
>: (45)

The graph of v(t) is shown in Fig. 3. It is clear from Fig. 3 thatZ b

0

v tð Þ � v tþ lð Þdtþ

Z l

c
v tþ Tð Þ � v tð Þdt40. (46)

Consequently, we know from Theorem 2 that Model 2 has more net profit per unit time than Model 1,
which is shown in Table 2.

5. Conclusions

If we omit the shortage cost and the cost of lost goodwill into the production-inventory model with many
lost sales, then we alter the results, and overestimate the profits. In this paper, we not only extend Abad’s
(2003) model by adding the shortage cost and the cost of lost goodwill into his model, but also compare his
modeling approach and Goyal and Giri’s (2003) approach. We analytically prove that both models provide
the same net profit per unit time if all parameters are constant. Otherwise, under certain conditions Abad’s
model has more net profit per unit time than Goyal and Giri’s approach, and vice versa. In short, there is no
dominant modeling approach.
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Appendix A. The proof of Theorem 1
Proof. If v(t) ¼ v, h(t) ¼ h, c1(t) ¼ c1, and c2(t) ¼ c2, then from Eqs. (16)–(21) and (34)–(39), we have

R1 ¼ R2 ¼ pDT þ pR l� cð Þ; SC1 ¼ SC2 ¼ K ; PC1 ¼ PC2 ¼ vR bþ l� cð Þ,

HC1 ¼ HC2 ¼
h

s
Rb�DT½ �,

BC1 ¼ BC2 ¼
Rc1

k1

Z l

0

ln R�Dk0e
�k1c þDk0e

k1 t�cð Þ
� �

dt� ln Rð Þl�
k1

2
l� cð Þ

2

� �
,

and

LC1 ¼ LC2 ¼ c2 Dl� R l� cð Þ½ �; for any sameðp;T ; lÞ. (A.1)

Therefore, we have

Max: P2ðp;T ; lÞ ¼ P2ð p2;T2; l2Þ

¼ P1ð p2;T2; l2ÞpMax: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ. ðA:2Þ

Similarly, we can easily obtain

Max: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ

¼ P2ð p1;T1; l1ÞpMax: P2ð p;T ; lÞ ¼ P2ð p2;T2; l2Þ ðA:3Þ

From (A.2) and (A.3), we have

P1ð p1;T1; l1Þ ¼ P2ð p2;T2; l2Þ, (A.4)

which completes the proof of Part (a).
Similarly, if the holding cost is non-decreasing, and the other parameters are constants, then we have

R1 ¼ R2; SC1 ¼ SC2; PC1 ¼ PC2; BC1 ¼ BC2; LC1 ¼ LC2

and

HC1 �HC2 ¼

Z b

0

h tð Þ � h tþ lð Þ½ �
R�Dð Þ

s
1� e�st
� �

dt

þ

Z T

b
h tð Þ � h tþ lð Þ½ �

D

s
es T�tð Þ � 1
� �

dtp0; for any same ðp;T ; lÞ. ðA:5Þ

Therefore, we have

Max: P2ðp;T ; lÞ ¼ P2ð p2;T2; l2Þ

pP1ð p2;T2; l2ÞpMax:P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ ðA:6Þ

and vice versa. This completes the proof of Part (b).
Next, if the shortage cost is non-increasing with t, and the other parameters are constants, then we have

R1 ¼ R2; SC1 ¼ SC2; PC1 ¼ PC2; HC1 ¼ HC2; LC1 ¼ LC2
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and

BC1 � BC2 ¼
R

k1

Z c

0

c1 tþ Tð Þ � c1 tð Þ½ � ln
Dk0e

k1 t�cð Þ þ R�Dk0e
�k1c

R

� ��
dt

þ

Z l

c
c1 tþ Tð Þ � c1 tð Þ½ � ln

Re�k1 t�cð Þ �Dk0e
�k1t þDk0

R

� �
dt

�
p0; for any same ðp;T ; lÞ.

ðA:7Þ

Therefore, we have

Max: P2ðp;T ; lÞ ¼ P2ð p2;T2; l2Þ

pP1ð p2;T2; l2ÞpMax: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ, ðA:8Þ

and vice versa. This completes the proof of Part (c).
Finally, if the cost of lost goodwill is non-increasing, and the other parameters are constants, then we have

R1¼ R2; SC1¼ SC2; PC1¼ PC2; HC1¼ HC2; BC1¼ BC2

and

LC1 � LC2

¼

Z l

0

c2 tþ Tð Þ � c2 tð Þ½ � 1�
Rk0e

k1 t�cð Þ

R�Dk0e�k1c þDk0ek1 t�cð Þ

� �
Ddtp0; for any same ðp;T ; lÞ. ðA:9Þ

Consequently, we have

Max: P2ð p;T ; lÞ ¼ P2ð p2;T2; l2Þ

pP1ð p2;T2; l2ÞpMax: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ ðA:10Þ

and vice versa. This completes the proof of Part (d). &

Appendix B. The proof of Theorem 2
Proof. If the unit cost v(t) is varying with time, and the other parameters are constants, then we have

Z b

0

v tð Þ � v tþ lð Þ½ �dtþ

Z l

c
v tþ Tð Þ � v tð Þ½ �dtp0

3R

Z l

c
v tð Þ � v tþ Tð Þdtþ

Z b

0

v tþ lð Þ � v tð Þdt

� �
X0

3

Z l

c
v tð ÞRdtþ

Z bþl

l
v tð ÞRdt

� �
�

Z b

0

v tð ÞRdtþ

Z Tþl

Tþc
v tð ÞRdt

� �
X0

3PC2 � PC1 � 03P1 p;T ; lð Þ � P2 p;T ; lð Þ. ðB:1Þ

Consequently, we have

Max: P2ð p;T ; lÞ ¼ P2ð p2;T2; l2Þ

pP1ð p2;T2; l2ÞpMax: P1ð p;T ; lÞ ¼ P1ð p1;T1; l1Þ ðB:2Þ

and vice versa. This completes the proof of Theorem 2. &
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